دانلود پاورپوینت ١ اثر سنگدانه در بتن های خودتراکم - بنام خدا ١.اثر سنگدانه در بتن های خودتراکم محدوده وسیعی ازاندازه سنگدانه ها درتهیه بت...
دانلود پاورپوینت ویژگی ها و کاربرد رویه های بتن غلتکی - بنام خدا 1 ویژگی ها و کاربرد رویه های بتن غلتکی 2 عناوین مورد اشاره معرفی تاریخچه...
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : word (..doc) ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 57 صفحه
قسمتی از متن word (..doc) :
کنترل ترک
دو عامل اصلی برای ترک در بتن عبارتند از :
1. تنش بر اثر بارهای وارده (Control joints)
2. تنش بر اثر آب رفتگی در حین خشک شدن یا تغییرات دما (Restraint)
شیوه جلوگیری
1. درزهای کنترل مؤثرترین شیوه جلوگیری از ترک های غیر قابل رؤیت به شمار می آیند (Isolation Joints)
2. درزهای جداکننده دال را از قسمتهای دیگر سازه جدا می کنند و اجازه حرکت افقی و عمودی را در دال می دهد (Footings)
3. درزهای اجرائی جائی که کار بتن ریزی روزانه پایان می یابد، ایجاد می شوند; و مناطقی را که در دفعات مختلف بتن ریزی می شوند از یکدیگر جدا می سازند.
کنترل ترک
دو عامل اصلی برای ترک در بتن عبارتند از :
1. تنش بر اثر بارهای وارده (Control joints)
2. تنش بر اثر آب رفتگی در حین خشک شدن یا تغییرات دما (Restraint)
شیوه جلوگیری
1. درزهای کنترل مؤثرترین شیوه جلوگیری از ترک های غیر قابل رؤیت به شمار می آیند (Isolation Joints)
2. درزهای جداکننده دال را از قسمتهای دیگر سازه جدا می کنند و اجازه حرکت افقی و عمودی را در دال می دهد (Footings)
3. درزهای اجرائی جائی که کار بتن ریزی روزانه پایان می یابد، ایجاد می شوند; و مناطقی را که در دفعات مختلف بتن ریزی می شوند از یکدیگر جدا می سازند.
کنترل ترک
دو عامل اصلی برای ترک در بتن عبارتند از :
1. تنش بر اثر بارهای وارده (Control joints)
2. تنش بر اثر آب رفتگی در حین خشک شدن یا تغییرات دما (Restraint)
شیوه جلوگیری
1. درزهای کنترل مؤثرترین شیوه جلوگیری از ترک های غیر قابل رؤیت به شمار می آیند (Isolation Joints)
2. درزهای جداکننده دال را از قسمتهای دیگر سازه جدا می کنند و اجازه حرکت افقی و عمودی را در دال می دهد (Footings)
3. درزهای اجرائی جائی که کار بتن ریزی روزانه پایان می یابد، ایجاد می شوند; و مناطقی را که در دفعات مختلف بتن ریزی می شوند از یکدیگر جدا می سازند.
کنترل ترک
دو عامل اصلی برای ترک در بتن عبارتند از :
1. تنش بر اثر بارهای وارده (Control joints)
2. تنش بر اثر آب رفتگی در حین خشک شدن یا تغییرات دما (Restraint)
شیوه جلوگیری
1. درزهای کنترل مؤثرترین شیوه جلوگیری از ترک های غیر قابل رؤیت به شمار می آیند (Isolation Joints)
2. درزهای جداکننده دال را از قسمتهای دیگر سازه جدا می کنند و اجازه حرکت افقی و عمودی را در دال می دهد (Footings)
3. درزهای اجرائی جائی که کار بتن ریزی روزانه پایان می یابد، ایجاد می شوند; و مناطقی را که در دفعات مختلف بتن ریزی می شوند از یکدیگر جدا می سازند.
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : word (..doc) ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 14 صفحه
قسمتی از متن word (..doc) :
روان کننده در بتن
امروزه استفاده از انواع مختلف روان کننده ها در بتن به یک ضرورت تبدیل شده است. این مواد با اهداف گوناگون از جمله بتن ریزى در محل هاى پرآرماتور و یا توسط پمپ که به بتن با اسلامپ بالا نیاز است، مورد استفاده قرار مى گیرند.
علاوه بر موارد فوق ،مصرف روان کننده ها جهت ارتقاء کیفیت بتن از جمله کاهش نفوذپذیرى، افزایش مقاومت و دوام آن توسط متخصصین بتن توصیه مى گردد.
به لحاظ تئوریک هر چه نسبت آب به سیمان کمتر و توزیع سیمان در بین اجزاء سازنده بتن بیشتر باشد، بتن از کیفیت بالاترى برخوردار خواهد شد زیرا فضاهاى خالى داخل آن به حداقل رسیده و در نتیجه وزن مخصوص و مقاومت بتن افزایش یافته و میزان نفوذپذیرى آن کاهش مى یابد.
سـوپـر روان کـنندهSCO - 4 تولیدی این شرکت بر پایه پلی کربوکسیلیکها تولید می گردد که طبـق استـانـدارد ASTM C - 494 Type G مقـدار آب مصـرفى را حـداقل تا 12 درصـد کاهـش و مقاومت بتن را 30 – 20 درصد افزایش مى دهد.
موارد مصرف:
بتن ریزى هاى با پمپ، سازه هاى فوق العاده مسلح، فونداسیون ماشین آلات، سقف، ستون ، قطعات پیش ساخته بتنى، کف سالنهاى صنعتى، بتن ریزى هاى حجیم و چند لایه. و اصولا در کلیه مواردى که کیفیت بهتر بتن مورد نظر باشد .
مــــــزایا:
با استفاده از سوپر روان کننده SCO - 4 می توانید به خصوصیات فنى و اجرائى برترى دست یابید.خصوصیاتى مانند: پلاستیستیه بالا بدون آب افتادگى، صرفه جوئى در زمان و هزینه هاى ریختن بتن، ویبراسیون کمتر، بتن مقاوم و بدون خلل و فرج ،کاهش میزان مصرف سیمان .
روش و میزان مصرف:
به مقدار 2 الى 3 درصد وزن سیمان مصرفى به آب بتن اضافه نموده و به مدت 1 الى 2 دقیقه تا بدست آمدن مخلوط همگن و یکنواخت مخلوط شود. با استفاده از سوپر روان کننده SCO - 4 مى توانید حداقل تا 12% از میزان آب مصرفى را بدون کاهش کارائى بتن کم نمایید.
در مواردى که سوپر روان کننده SCO - 4 به بتن آماده اضافه میگردد توصیه مى شود هنگام ساخت بتن 12% از آب مصرفى بتن کاسته و در محل کارگاه مقدار لازم سوپر
روان کننده به بتن اضافه و به مدت چند دقیقه مخلوط شود .
این سوپر روان کننده همخوانى مناسبى با میکروسیلیس دارد و براى ساخت بتنهاى حاوى میکروسیلیس توصیه میگردد.
تـوجه: سوپر روان کننده SCO - 4 با سیمان تیپ 5 ( ضد سولفات ) سازگارى نداشته و مصـرف بیش از 5/. در صد آن با این نوع سیمان باعث افزایش شدید زمان گیرش و در مواردى عدم گیرش خواهد شد.
مشخصات فنى :
حالت فیزیکى : مایع
رنگ : سبز
وزن مخصوص : حدود 1gr/cm³
یون کلر : ندارد
PH:ة 5/8-5/9
زمان مصرف و نحوه نگهدارى : حداقل یک سال، بدور از تابش مستقیم خورشید و یخزدگى
استاندارد : ASTM C- 494 Type G
بسته بندى : در گالنهاى پلاستیکى 20 لیترى یا بشکه هاى 220 لیترى
در زیر به برخی روان کننده ها که موراد استفاده زیادی دارند اشاره می شود :
دارای گواهینامه فنی از مرکز تحقیقات ساختمان و مسکن ایران به شماره 3910 - 1
این ماده جهت بهبود و ارتفاءکیفیت بتن با خاصیت دیر گیری در مناطق گرم استفاده میگردد.
این فوق روان کننده ضمن ایجاد روانی و افزایش مقاومت در بتن با تاخیر در گیرش برای بتن های حجیم و همچنین بتن ریزی در مناطق گرم بسیار مناسب میباشد . استفاده از این نوع روان کننده در بتن ریزیهای با سطح زیاد و ضخامت کم از ایجادترکهای سطحی جلوگیری می کند .
فوق روان کننده تولیدی این شرکت مطابق با استاندارد ASTM C494 در مراکز معتبر تحقیقاتی مورد آزمایش قرار گرفته که نتایج آزمایشات مبین کیفیت مطلوب این ماده است .
این ماده به صورت مایع و پودر تولید می گردد.
مشخصات
مایع
پودر
حالت فیزیکی
مایع 1 + 28
بصورت پودری شکل
رنگ
شفاف تا کمی مایل به زرد
سفید رنگ
یون کلر
فاقد یون کلر
فاقد یون کلر
PH
9.5 تا 8.5
9.5 - 8.5 (30 در صد مایع)
وزن مخصوص
1.175-1.165 g/cm3
6/. - 5/. g/cm3
زمان نگهداری
حداقل یکسال در ظروف بسته و دور از تابش خورشید
بیش از یکسال در کیسه اصلی
میزان مصرف
5/. الی 5/1 در صد ورن سیمان
2/. الی 5/. در صد سیمان
خصوصیات :
این مواد جهت مناطق گرم و بتن ریزیهای حجیم مانند سدها ، سایتهای پتروشیمی ، مخازن آب ، و بتن ریزی با پمپ در سازه های قوق العاده مسلح و بتن های سقف ، ستون و قطعات بتنی و …. مورد مصرف دارد.
فوق روان کننده زودگیر BEH240 A
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : word (..doc) ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 88 صفحه
قسمتی از متن word (..doc) :
دانشگاه پیام نور زاهدان
افزودنیهای بتن
چند نمونه از افزودنی های بتن
ژل میکروسیلیس SF-1
فوق روان کننده LS-1R
فوق روان کننده MS-1R
فـوق روان کننده NS-1R
فوق روان کننده MS-1
فوق روان کننده SP-1
روان کننده P-101
واترپروف بتن (مایع) WP-1
واترپروف بتن(پودری ) WR-600
هوازای بتن AE-1
ضدیخ بتن AF-1
زودگیـر بتن AS-1
زود گیـر بتن AA-1
زودگیر شاتکریت AA-101
دیرگیربتن CR-1
افزودنی منبسط کننده G2
میکروسیلیس
فوق روان کننده CP-650
فوق روان کننده CP-660
فوق روان کننده LS-1R
معرفی محصول
فوق روان کننده LS-1R بر پایه لیگنوسولفونیت تولید و عرضه میگردد . مصرف این روان کننده باعث ارتقا ء کیفیت بتن از جمله کاهش نفوذ پذیری , افزایش مقاومت و دوام آن می گردد.
فوق روان کننده LS-1R از قدرت روان کنندگی خوبی بر خوردار است، بطوریکه بدون کاهش دادن مقاومت بتـن ، اسلامپ 4 را حداقل تا 2.5 برابر( اسـلامپ 10 ) افزایش می دهد.
فوق روان کننده LS-1R مطابق استاندارد ASTM-C494 Type G تولید می شود.
موارد مصرف
بتن ریزی های با پمپ، سازه های فوق العاده مسلح، فونداسیون ماشین آلات، سقف، ستون ، قطعات پیش ساخته بتنی، کف سالنهای صنعتی، بتن ریزیهای حجیم و چند لایه.
مزایا
با استفاده از فوق روان کننده LS-1R میتوانید به خصوصیات فنی و اجرائی برتری از قبیل: پلاستیستیه بالا بدون آب افتادگی، صرفه جوئی در زمان و هزینه های بتن ریزی،احتیاج به ویبراسیون کمتر، ساخت بتن مقاوم و بدون خلل و فرج دست یابید.فوق روان کننده
LS-1R فاقد یون کلر بوده و هیچ اثر سوئی بر روی آرماتورها ندارد
روش و میزان مصرف
به مقدار 8/0 تا 5/1 درصد وزن سیمان مصرفی به آب بتن اضافه نموده و به مدت حداقل یک دقیقه برای هر متر مکعب بتن مخلوط شود. با استفاده از فوق روان کننده LS-1R میتوانید حداقل تا 10% از میزان آب مصرفی بدون کاهش کارائی بتن کم نمایید.
مشخصات فنی
حالت فیزیکی
مایع
رنگ
خاکستری
وزن مخصوص
حدود1.05gr/cm³
یون کلر
ندارد
P
8.5 الی 9.5
استاندارد
ASTM C494 Type G
زمان مصرف و نحوه نگهداری
یک سال ،بدور از یخ زدگی
بسته بندی
در گالن های پلاستیکی 20 لیتری و بشکه های 200 لیتری
لینک دانلود و خرید پایین توضیحات
دسته بندی : پاورپوینت
نوع فایل : powerpoint (..ppt) ( قابل ویرایش و آماده پرینت )
تعداد اسلاید : 23 اسلاید
قسمتی از متن powerpoint (..ppt) :
بنام خدا
مقاومت فشاری بتن
مقاومت فشاری بتن
مقاومت بتن بستگی به عوامل زیر دارد :
1.نسبت سیمان
2.مصالح درشت و ریز دانه
3.آب و مواد مضاف گوناگون
*.هرچه نسبت آب به سیمان کمتر باشد ،مقاومت فشاری بتن بیشتر خواهد شد.
**.افزایش اب مصرفی در مخلوط بتن برای بالا بردن قابلیت کارپذیری سبب کاهش مقاومت فشاری می شود.
معیار سنجش قابلیت کار پذیری بتن ..
معیار سنجش قابلیت کارپذیری بتن توسط آزمایش اسلامپ صورت می گیرد که به نتیجه بدست آمده ضریب شلی یا روانی بتن گفته می شود.
دسته بندی | عمران |
فرمت فایل | |
حجم فایل | 39989 کیلو بایت |
تعداد صفحات فایل | 300 |
73 مقاله کاربردی در مورد بتن و سازه های بتنی زبان اصلی
Models for Chloride Diffusion Coefficients of Concretes in Tidal Zone
Investigation into Yield Behavior of Fresh Cement Paste Model and Experiment
Intrinsic Model to Predict Formwork Pressure
Temperature Stability of Compressive Strength of Cement Asphalt Mortar
Effect of Filtering on Texture Assessment of Concrete Surfaces
Investigation of Alkali-Silica Reaction Inhibited by New Lithium Compound
Effect of Different Dosages of Polypropylene Fibers in Thin Whitetopping Concrete Pavements
Effect of Bottom Ash as Fine Aggregate on Shrinkage Cracking of Mortars
Polyvinyl Alcohol Fiber-Reinforced Mortars for Masonry Applications
Effect of Curing Methods on Autogenous Shrinkage and Self-Induced Stress of High-Performance Concrete
Synergistic Effect between Glass Frit and Blast-Furnace Slag
Expansion of MgO in Cement Pastes Measured by Different Methods
Critical Corrosion Threshold of Galvanized Reinforcing Bars
Potential Approach to Evaluating Soundness of Concrete Containing MgO-Based Expansive Agent
Modeling Mechanical Behavior of Reinforced Concrete due to Corrosion of Steel Bar
Interface Tailoring of Polyester-Type Fiber in Engineered Cementitious Composite Matrix against Pullout
Effects of Liquid Nitrogen Cooling on Fresh Concrete Properties
Experimental Study on Mechanical Properties of Concrete Confined with Plastic Pipe
Measurement of Oxygen Permeability of Epoxy Polymers
Effect of Age and Water-Cement Ratio on Size and Dispersion of Pores in Ordinary Portland Cement Paste
Inspection of Concrete Using Air-Coupled Ultrasonic Pulse Velocity
Compressive Strength Relationships for Concrete under Elevated Temperatures
10. رفتار خزش بتن با مقاومت بالا با الیاف پلی پروپیلن در دمای بالا
Creep Behavior of High-Strength Concrete with Polypropylene Fibers at Elevated Temperatures
11. رفتار بتن با مقاومت ویژه, مسلح شده با الیاف شیشه و مدلهای عددی
Ultra-High-Strength, Glass Fiber-Reinforced Concrete Mechanical Behavior and Numerical Modeling
12. بتن ماسه ای فشرده در روسازی یک راه حل اقتصادی و محیطی
Compacted Sand Concrete in Pavement Construction:An Economical and Environmental Solution
Early-Age Shrinkage Strains Versus Depth of Low Water-Cement Ratio Mortar Prisms
New Methodology to Proportion Self-Consolidating Concrete with High-Volume Fly
Shrinkage of Precast, Prestressed Self-Consolidating Concrete
New Viscoelastic Model for Early-Age Concrete Based on Measured Strains and Stresses
Wavelet Analysis of Ultrasonic Pulses in Cement-Based Materials
Salt Weathering of Concrete by Sodium Carbonate and Sodium Chloride
Environmental Effects on Mechanical Properties of Wet Lay-Up Fiber-Reinforced Polymer
Effects of Hauling Time on Air-Entrained Self-Consolidating Concrete
Artificial Neural Network Modeling of Early-Age Dynamic Young’s Modulus of Normal Concrete
Performance of Permeability-Reducing Admixtures in Marine Concrete Structures
Assessing Mechanical Properties and Microstructure of Fire-Damaged Engineered Cementitious Composites
Characterization of Deep Surface-Opening Cracks in Concrete Feasibility of Impact-Generated Rayleigh-Waves
Analysis of Mortar Long-Term Strength with Supplementary Cementitious Materials Cured at Different Temperatures
Influence of Chemistry of Chloride Ions in Cement Matrix on Corrosion of Steel
Corrosion Protection of Fiber-Reinforced Polymer-Wrapped Reinforced Concrete
Self-Consolidating High-Strength Concrete Optimization by Mixture Design Method
Calcium Hydroxide Formation in Thin Cement Paste Exposed to Air
Size and Wall Effects on Compressive Strength of Concretes
Correlation of Reaction Products and Expansion Potential in Alkali-Silica Reaction for Blended Cement Materials
Detection of Aggregate Clay Coatings and Impacts on Concrete
Triple Percolation in Concrete Reinforced with carbon Fiber
Performance of Cast-in-Place Self-Consolidating Concrete Made with Various Types of Viscosity-Enhancing Admixtures
12. Planar Image-Based Reconstruction of Pervious Concrete Pore Structure and Permeability Prediction
Comparison of Methods for Texture Assessment of Concrete Surfaces
Effect of Aggregate Type on Mechanical Properties of Reactive Powder Concrete
Bidirectional Multiple Cracking Tests on High-Performance Fiber-Reinforced Cementitious Composite Plates
Precision of Compressive Strength Testing of Concrete with Different Cylinder Specimen Sizes
Numerical Simulation of Stress Waves on Surface of Strongly Heterogeneous Media
Influence of Fiber Type on Creep Deformation of Cracked Fiber-Reinforced Shotcrete Panels
Suitability of Various Measurement Techniques for Assessing Corrosion in Cracked Concrete
New Method for Proportioning Self-Consolidating Concrete Based on Compressive Strength Requirements
Thermal Strain and Drying Shrinkage of Concrete Structures in the Field
Inclined Plane Test to Evaluate Structural Buildup at Rest of Self-Consolidating Concrete
Electrical Resistance Tomography for Assessment of Cracks in Concrete
Influence of Mixing Sequence on Cement-Admixture Interaction
Effect of Non-Ground-Granulated Blast-Furnace Slag as Fine Aggregate on Shrinkage Cracking of Mortars
Effect of Mixture Compositions on Workability and Strength of Fly Ash-Based Inorganic Polymer Mortar
Corrosion Process of Steel Bar in Concrete in Full Lifetime
Hybrid RotatingFixed-Crack Model for High-Performance Fiber-Reinforced Cementitious Composites
Conductive Concrete for Cathodic Protection of Bridge Decks
Instantaneous In-Situ Determination of Water-Cement Ratio of Fresh Concrete
Time Evolution of Chloride Penetration in Blended Cement Concrete
Carbon-Fiber Cement-Based Materials for Electromagnetic Shielding
Self-Healing Characterization of Engineered Cementitious Composite Materials
Effect of Aggregate Size and Gradation on Pervious Concrete Mixtures
Effect of Calcium Chloride and Initial Curing Temperature on Expansion Caused by Sulfate Exposure
دسته بندی | عمران |
فرمت فایل | |
حجم فایل | 8253 کیلو بایت |
تعداد صفحات فایل | 100 |
مجموعه 12 مقاله کاربردی در مورد بتن و سازه های بتنی زبان اصلی
High-Early-Strength Engineered Cementitious Composites for Fast, Durable Concrete Repair—Material Properties
Unified Shrinkage Model for Concrete from Autogenous Shrinkage Test on Paste with and without Ground-Granulated Blast-Furnace Slag
Evaluation of Autogenous Deformation of Concrete at Early Ages
Influence of Surface Crack Width on Bond Strength of Reinforced Concrete
Simple Analytical Model for Formwork Design of Self-Consolidating Concrete
Ultra-High Performance Concrete with Compressive Strength Exceeding 150 MPa (22 ksi) A Simpler Way
Prediction of Efficiency Factor of Ground-Granulated Blast- Furnace Slag of Concrete Using Artificial Neural Network
Engineering Properties of Alkali-Activated Natural Pozzolan Concrete
Effectiveness of Mixing Time on Hardened Properties of Waterglass-Activated Slag Pastes and Mortars
Failure Behavior of Concrete Cylinders under Different End Conditions
Prediction of Equivalent Steady-State Chloride Diffusion Coefficients
Damage Behavior of Yarn Embedded in Concrete Using Acoustic Emission Analysis
دسته بندی | عمران |
بازدید ها | 48 |
فرمت فایل | docx |
حجم فایل | 44 کیلو بایت |
تعداد صفحات فایل | 10 |
سازه بتنی سازهای است که در ساخت آن از بتن یا به طور معمول بتن آرمه (سیمان، شن، ماسه و پولاد به صورت میلگرد ساده یا آجدار) استفاده شده باشد. در ساختمان در صورت استفاده از بتن آرمه در قسمت ستونها و شاه تیرها و پی، آن ساختمان یک سازه بتنی محسوب میشود.
امروزه بسیاری از پلها را از بتن آرمه می سازند. برای استفاده از پل های بلندتر و بیشتر شدن فاصله پایه پلها از تیر پیشتنیده استفاده می شود